Experiment 1: Dencity of a Metal are Distance between it's Atoms:

- NoTE: ir Metal, The atoms are, spherical and identical lina

$$
\begin{aligned}
& v= \\
& w \times T \times L /
\end{aligned}
$$

* To calculate (Estimate) Number of atoms (N) in piece of Material $:$

$$
\begin{aligned}
{\left[1-N=n\left(N_{A}\right)=\frac{\mu}{A w} N_{A} \quad \begin{array}{ll}
M \rightarrow(-N i \sim(1)) \text { Mass } \\
& N_{\text {Na }} \rightarrow \text { Avogadros Number } \\
& \text { Nw AtomiC Class }
\end{array}\right) }
\end{aligned}
$$

If we assumed that Every

$$
j_{n y+1} \pi \bar{\pi}[\sqrt{1} /
$$ Atom's inside a box of edge (a), we can describe The law of N in another ways.

$$
N=\frac{\mu}{\rho a^{3}}-|2| \text { dosity }{ }_{\text {val den }}^{*} P a^{3}=A w
$$

from equations 17 and 127 :

$$
a=\sqrt[3]{\frac{A w}{P N_{A}}}\left\{\begin{array}{l}
\text { InC.? } \\
\text { lens : Estimated by The } \\
\text { Balance Scale. } \\
- \text { volume: } \frac{\Delta V}{V}=\frac{\Delta T}{T}+\frac{\Delta L}{L}+\frac{\Delta w}{w}
\end{array}\right.
$$

